Thermalization and Plasma Instabilities

Michael Strickland

Frankfurt Institute for Advanced Studies

Strong and Electroweak Matter 2006 12 May 2006

Motivation

- We would like to have a first principles derivation of the mechanisms and time scales necessary for the isotropization and equilibration of a quark-gluon plasma.
- In addition to equilibration via 2-2 elastic scattering (super slow) one needs to include inelastic processes, e.g. bremstrahlung 2-3 (and 3-2) processes, and the effect of background fields.
- In equilibrium the background field (soft modes) only serves to screen the interaction (Debye screening). However, in a non-equilibrium setting the background field can have non-trivial dynamics.
- Consider, for example, a spatially homogeneous plasma which has been initialized such that it has a "temperature" anisotropy.
- In such an anisotropic plasmas new collective modes corresponding to electro-/chromodynamic instabilities appear.

Why anisotropic distribution functions?

Because of the natural expansion of the system the gluon distribution functions created during relativistic heavy ion collisions are *generically* locally anisotropic in momentum space.

$$< p_T > \sim Q_s$$
 (nuclear saturation scale)
 $< p_L > \sim 1/\tau$ (free streaming)

Current Filamentation

Abelian Plasma

Collective Modes of an Isotropic QGP

The isotropic hard-thermal-loop (HTL) gluon propagator is given by

$$\Delta^{ij} = (k^2 - \omega^2 + \Pi_T)^{-1} (\delta_{ij} - k^i k^j / k^2) - \frac{k^2}{\omega^2} (k^2 - \Pi_L)^{-1} k^i k^j / k^2$$

with

$$\Pi_{T}(\omega, k) = \frac{m_{D}^{2}}{2} \frac{\omega^{2}}{k^{2}} \left[1 - \frac{\omega^{2} - k^{2}}{2\omega k} \log \frac{\omega + k}{\omega - k} \right] ,$$

$$\Pi_{L}(\omega, k) = m_{D}^{2} \left[\frac{\omega}{2k} \log \frac{\omega + k}{\omega - k} - 1 \right] ,$$

and $m_D \propto gT$.

$$\lim_{\omega \to 0} \Pi_L(\omega, k) = m_D^2 \quad \text{electric screening}$$

$$\lim_{\omega \to 0} \Pi_T(\omega, k) = 0 \quad \textbf{no magnetic screening}$$

Collective Modes of an Isotropic QGP

In the isotropic case the only poles are at real timelike ($\omega > k$) momentum. In order to determine the dispersion relations for these excitations we can then explicitly look for the poles in the propagator.

$$0 = k^2 - \omega_T^2 + \Pi_T(\omega_T, k)$$

$$0 = k^2 - \Pi_L(\omega_L, k)$$

Anisotropic Gluon Polarization Tensor

In order to determine the HL gluon polarization we can use either linearized three-dimensional kinetic theory (Boltzmann-Vlasov eq)

$$[v \cdot D_X, \delta n(p, X)] + gv_{\mu}F^{\mu\nu}(X)\partial_{\nu}^{(p)}n(\mathbf{p}) = 0$$
$$D_{\mu}F^{\mu\nu} = J^{\nu} = g\int_{p} v^{\nu}\delta n(p, X)$$

or diagrammatically

In both cases the result for the retarded self-energy is

$$\Pi_{ab}^{ij}(K) = -g^2 \delta_{ab} \int_{\mathbf{p}} v^i \partial_l f(\mathbf{p}) \left(\delta^{jl} - \frac{v^j k^l}{K \cdot V + i\epsilon} \right)$$

The nature of the anisotropy

We assume that the anisotropic distribution function can be obtained from an arbitrary isotropic distribution function by a change of its argument.

$$f(p^2) \to f(p^2 + \xi(p \cdot n)^2)$$

The polarization tensor can then be written as

$$\Pi^{ij}(K) = m_D^2 \int \frac{d\Omega}{4\pi} v^i \frac{v^l + \xi(v \cdot n)n^l}{\left(1 + \xi(v \cdot n)^2\right)^2} \left(\delta^{jl} - \frac{v^j k^l}{K \cdot V + i\epsilon}\right)$$

where m_D is the *isotropic* Debye mass

$$m_D^2 = -\frac{g^2}{2\pi^2} \int_0^\infty dp \, p^2 \frac{df(p^2)}{dp}$$

New Mass Scales – $\xi > 0$

Sketch of the effective potential of an unstable mode.

Angular dependence of m_{α}^2 , m_{+}^2 , and m_{-}^2 at fixed $\xi=10$.

Anisotropic Collective Modes ($\xi > 0$)

Unstable Modes – $\xi > 0$

 $\Gamma_{\alpha}(k)$ and $\Gamma_{-}(k)$ as a function of k for $\xi = 10$ and $\theta_n = \pi/8$.

Anisotropic HL Effective Action

Using the requirement of gauge invariance it is possible to determine all n-point functions.

$$S_{\text{HL}} = -\frac{g^2}{2} \int_x \int_{\mathbf{p}} f(\mathbf{p}) F_{\mu\nu}^a(x) \left(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2}\right)_{ab} F_{\rho}^{b\mu}(x)$$
$$= -\frac{g^2}{2} \int_x \int_{\mathbf{p}} f(\mathbf{p}) W^{\mu}(x, \hat{\mathbf{p}}) W_{\mu}(x, \hat{\mathbf{p}})$$

For example, from this we can obtain the anisotropic 3-gluon vertex

$$\Gamma^{\mu\nu\lambda}(k,q,r) = \frac{g^2}{2} \int_{\mathbf{p}} \frac{\partial f(\mathbf{p})}{\partial p^{\beta}} \, \hat{p}^{\mu} \hat{p}^{\nu} \hat{p}^{\lambda} \left(\frac{r^{\beta}}{\hat{p} \cdot q \, \hat{p} \cdot r} - \frac{k^{\beta}}{\hat{p} \cdot k \, \hat{p} \cdot q} \right)$$

Real-Time Lattice Simulation

Numerically solve the equations of motion resulting from the HL effective action on a space + velocity lattice.

$$j^{\mu}[A] = -g^2 \int_{\mathbf{p}} \frac{1}{2|\mathbf{p}|} p^{\mu} \frac{\partial f(\mathbf{p})}{\partial p^{\beta}} W^{\beta}(x; \mathbf{v})$$

with

$$[v \cdot D(A)]W_{\beta}(x; \mathbf{v}) = F_{\beta\gamma}(A)v^{\gamma}$$

and $v^{\mu} = p^{\mu}/|\mathbf{p}| = (1, \mathbf{v})$.

This has to be solved with

$$D_{\mu}(A)F^{\mu\nu} = j^{\nu}$$

where $\nu = 0$ is the Gauss law constraint.

\vec{v} -discretized equations of motion

Recall,

$$j^{\nu}[A] = -g^2 \int_{\mathbf{p}} \frac{1}{2|\mathbf{p}|} p^{\nu} \frac{\partial f(\mathbf{p})}{\partial p^{\beta}} W^{\beta}(x; \mathbf{v})$$

A closed set of gauge-covariant equations is obtained when the angular integral over $\hat{\mathbf{p}}$ is discretized.

The full HL dynamics is then approximated by the following set of equations

$$[v \cdot D(A)] \mathcal{W}_{\mathbf{v}} = (a_{\mathbf{v}} F^{0\mu} + b_{\mathbf{v}} F^{z\mu}) v_{\mu}$$
$$D_{\mu}(A) F^{\mu\nu} = j^{\nu} = \frac{1}{\mathcal{N}} \sum_{\mathbf{v}} v^{\nu} \mathcal{W}_{\mathbf{v}}$$

which can be systematically improved by increasing \mathcal{N} .

3s \times 3v Hard-loop results – $\xi = 10$

A. Rebhan, P. Romatschke, M. Strickland, hep-ph/0505261

3s × 3v Hard-loop results – Nonabelian cascade

P. Arnold and G. Moore, hep-ph/0509206; hep-ph/0509226.

3s \times 3v - Larger Anisotropies - $\xi = 100$

D. Bödeker and K. Rummukainen, SEWM06 poster session.

A model of the effect of collisions

We can model the collisional kernel by a Bhatnagar-Gross-Krook (BGK) collision term resulting in a linearized Boltzmann-Vlasov equation of the form

$$[V \cdot D_X, \delta f(p, X)] + gV_{\mu}F^{\mu\nu}\partial_{\nu}^{(p)}f(\mathbf{p}) = L\left(C_{\mathrm{BGK}}[f + \delta f]\right)$$

$$C_{\mathrm{BGK}}[f] = -\nu\left(f(p, X) - \frac{N^i(X)}{N_{\mathrm{eq}}^i}f_{\mathrm{eq}}(|\mathbf{p}|)\right)$$

where ν has dimensions of energy and represents the collisional frequency.

For hard, O(1) direction changing interactions $\nu_{\rm hard}/p_{\rm hard}\sim g^4\log g$ and for small-angle ($\theta\sim g$) deflections $\nu_{\rm soft}/p_{\rm hard}\sim g^2\log g$. Assuming the later as an upper bound then $\nu\sim 0.2\,m_D$ when $\alpha_s=0.3$.

B. Schenke, C. Greiner, M. Thoma, and MS, hep-ph/0603029.

BGK Anisotropic Dispersion Relations

In the limit $\xi \rightarrow \infty$ you can show analytically that there is no instability for

 $v > 0.6267 \, m_D$

Colored-Particle-in-Cell Simulations (CPIC)

Hard-loop approximation strictly only applies when there is a large scale separation and weak-field limit ($A \ll p_{\rm hard}/g$).

What happens when one relaxes these assumptions? Let's go back to the transport equations and try to solve without linearization. Recall the Vlasov equation

$$p^{\mu} \left[\partial_{\mu} - gq^a F^a_{\mu\nu} \partial^{\nu}_p - gf_{abc} A^b_{\mu} q^c \partial_{q^a}\right] f(x, p, q) = 0$$

The Vlasov equation is coupled self-consistently to the Yang-Mills equation for the soft gluon fields,

$$D_{\mu}F^{\mu\nu} = J^{\nu} = g \int \frac{d^3p}{(2\pi)^3} dq \, q \, v^{\nu} f(t, \boldsymbol{x}, \boldsymbol{p}, q)$$

CPIC - Wong-Yang-Mills equations

Can be solved numerically by replacing the continuous single-particle distribution f(x, p, q) by a large number of test particles:

$$f(\boldsymbol{x}, \boldsymbol{p}, q) = \frac{1}{N_{\text{test}}} \sum_{i} \delta(\boldsymbol{x} - \boldsymbol{x}_i(t)) (2\pi)^3 \delta(\boldsymbol{p} - \boldsymbol{p}_i(t)) \delta(q^a - q_i^a(t))$$

where $x_i(t)$, $p_i(t)$ and $q_i^a(t)$ are the coordinates, momentum, and charge of an individual test particle.

$$\frac{d\boldsymbol{x}_{i}}{dt} = \boldsymbol{v}_{i}$$

$$\frac{d\boldsymbol{p}_{i}}{dt} = g q_{i}^{a} (\boldsymbol{E}^{a} + \boldsymbol{v}_{i} \times \boldsymbol{B}^{a})$$

$$\frac{d\boldsymbol{q}_{i}}{dt} = ig v_{i}^{\mu} [A_{\mu}, \boldsymbol{q}_{i}]$$

$$J^{a\nu} = \frac{g}{N_{\text{test}}} \sum_{i} q_{i}^{a} v^{\nu} \delta(\boldsymbol{x} - \boldsymbol{x}_{i}(t))$$

CPIC - Results

Time evolution of the field energy densities for SU(2) gauge group and anisotropic initial particle momentum distributions. Simulation parameters are L=5 fm, $p_{\rm hard}=16$ GeV, $g^2\,n_g=10/{\rm fm^3}$, $m_\infty=0.1$ GeV.

A. Dumitru, Y. Nara, and M. Strickland, hep-ph/0604149

CPIC - Ultraviolet Avalanche

Squares of the Fourier transformed (color-) electric and magnetic fields (in lattice units) at four different times.

A. Dumitru, Y. Nara, and M. Strickland, hep-ph/0604149

CPIC - Ultraviolet Avalanche

Squares of the Fourier transformed (color-) electric and magnetic fields (in lattice units) at four different times.

A. Dumitru, Y. Nara, and M. Strickland, hep-ph/0604149

Cycle of isotropization?

Cycle of isotropization?

Hard Expanding Loops (HEL)

Including expansion at late times one can show

$$m_{\infty}(\tau) \propto \sqrt{\frac{Q_s}{\tau}}$$

$$A(\tau) \propto e^{\int_{\tau_0}^{\tau} m_{\infty}(t)dt}$$

$$\propto e^{\sqrt{Q_s\tau}}$$

To include the effect of expansion at all times one must solve the Boltzmann-Vlasov equation in an expanding metric using (τ, x^i, η) coordinates (A. Rebhan and P. Romatschke, hep-ph/0605064.):

$$p \cdot D \, \delta f^{a}|_{p^{\mu}} = g p^{\alpha} F_{\alpha\beta}^{a} \partial_{(p)}^{\beta} f_{0}(\mathbf{p}_{\perp}, p_{\eta})$$

$$\frac{1}{\tau} D_{\alpha} \left(\tau F^{\alpha\beta} \right) = j^{\beta} = \frac{g}{2} \int \frac{d^{2} p_{\perp} dy}{(2\pi)^{3}} p^{\beta} \delta f$$

Magnetic and electric field strength for each Fourier mode in rapidity

A. Rebhan and P. Romatschke, hep-ph/0605064.

Other recent related works of interest

- "The Unstable Glasma", Paul Romatschke, Raju Venugopalan, hep-ph/0605045.
- "Anomalous Viscosity of an Expanding Quark-Gluon Plasma", M. Asakawa, S.A. Bass, B. Müller, hep-ph/0603092
- Your name here!

Conclusions

- Anisotropic plasmas are qualitatively different than isotropic ones.
 An entirely new phenomena associated with unstable modes appears.
- For relatively weak anisotropies 3 space × 3 velocity real-time lattice simulations indicate that for non-abelian plasmas the soft unstable modes "saturate" and the growth then becomes power-law rather than exponential.
- However, for larger anisotropies it appears that exponential field growth can continue simliar to an abelian plasma.
- Addition of collisions slows down growth of instabilities but for realistic collisional frequencies instabilities are still present.
- Going beyond the hard-loop approximation by numerically solving the Wong-Yang-Mills equations (CPIC) also shows rapid field growth (but electric fields???) and an "ultraviolet avalanche" accompanied with saturation.